Mūsu uzdevums bija noskaidrot – Vai ir iespējama dzīvības izcelšanās kosmosā no vienšūņiem? Apkopojot informāciju, mēs secinājām, ka dzīvība aizsākās no Lielā Sprādziena. Viens ir pavisam skaidrs – dzīvības pirmssākums ir viena vienkārša šūna, kurai daloties un mijiedarbojoties ar visumu rodas citas šūnas. Varbūt, ka šūnas bija sastopamas jau pirms Lielā sprādziena, un sajūtot tā tuvošanos tās “iekapsulējās” un pārcieta šo sprādzienu un turpināja dzīvot arī pēc tā. Atsaucoties uz amerikāņu astronoma Edvīna Habla teoriju, visums kādreiz ir bijis mazs, bet tad tas izpletās un vēl joprojām turpina izplesties, tāpēc noteikti dzīvo organismu dažādība kļūst daudzveidīgāka. Secinājām, ka Dzīvība uz Zemes ir tikai viena no dzīvības formām mūsu galaktikā. „Visums ir ne tikai dīvaināks, nekā mēs iztēlojamies, tas ir arī dīvaināks, nekā mēs varam iztēloties.” (J.B.S. Holdeins, britu evolūcijas biologs.)

Site 11 is the name of our, Team Spatial Relations’, permanent lunar outpost. It is a fully functioning and realistic lunar outpost, which caters for all six of the housed astronauts’ needs. It also provides a laboratory to allow for extraterrestrial, low-gravity scientific experimentation and testing.
Its location will be on the rim of Peary Crater, at the lunar north pole. This location is constantly under sunlight for, at least, the lunar summer. This means that an abundance of solar energy will be available for harnessing, which will serve as the main source of energy to power the outpost.
Its design is relatively simple, consisting of three main modules and an entrance and exit module. Each individual module will be assembled separately, by the astronauts present. The required construction materials will be brought to trans-lunar injection by the Space Launch System, and the crew will be brought to the moon by the Orion Multi-Purpose Crew Vehicle. The outpost will also make use of the moon’s regolith, as a building material and also partly as a radiation shield.
A suitable environment will be sustained at Site 11, as an inflatable self-healing plastic body will provide an airtight container to hold the atmospheric air. A structural aluminium frame will enclose this inflatable body, ensuring that a suitable pressure is maintained.
Nothing about this project is fictional. This is an entirely plausible lunar outpost, made with available, or soon to be available, materials and machinery. Site 11 combines research ideas and practicality, creating a realistic plan for a lunar outpost.
- Site 11.pdf (.pdf) (Open)

this is our project from:
Bart van der Kroft
Steef Licher
Ferenc Sterkens
Max Vermeulen
class :ra3t
scool : dongemondcollege raamdonksveer
includes:
- project work sheet ( dutch)
- presentation
- our idea
- our final report
- the requirements
- PRWS_Odysseus_nl.doc (.doc) (Open)
- Final+report+finished+version (3).docx (.docx) (Open)
- Our+idea+ion+engine (2).docx (.docx) (Open)
- The requirements.docx (.docx) (Open)
- Odysseus (.)
- 252bproject (.)
- 2beind (.)
- 2bppt+(1)+v3 (2).pptx (.)
- 252bproject (.)
- 2beind (.)
- 2bppt+(1)+v3 (2).pptx (.)

The paper offers the model of structure of comet cores explaining the abnormal behavior of some comets based on the example of Holms Comet. The new hypothesis is based on: researches of E. Dmitriev involving an inclusion of high-potassic pumices in the composition of comets; peculiar structure of Saturn satellite Hyperion; results of researches of comet material ejection from the core of Tempel-1 Comet and mineral olivine detection there; J. Lagrange’ and S.Vsekhsvyatsky’ hypothesis about volcanic ejection of comet cores from the satellites of giant planets. The introduced model of comet core a high-poriferous pumice, pores of which are filled with a mix of frozen gases with inclusions of hard mineral particles. It’s supposed that the core has olivine glassy shell. The model explains unperiodical flashes of some comets after passing the perihelion.
- Comet.doc (.doc) (Open)

In the Solar System between Mars and Jupiter move thousands of huge rocks – the asteroids. The astronomers study the asteroids from more than 200 years and yet have not been able to find and trace all of them. But what we have learned about them gives us reason to believe that in the near future they will be the main source of natural resources for the human civilization. In the project “Catch an asteroid” we introduce our telescopic observations of a silicate asteroid and the results of the image processing. We traced the movement of this asteroid one whole night and measured its equatorial coordinates. Through the alteration of the asteroids radiance we calculated its most important physical characteristic, the period of rotation around the axis – 2.7072 hours. We gathered the known scientific information for the asteroid and using what we learned, we created a model of a space mission to the asteroid. We traced the asteroids movement for the next 30 years and chose an appropriate time for the launching of the space probe.
That’s how we “caught” and researched our asteroid with one of Bulgaria’s largest telescopes and then we planned its “space-capture” through a space probe in a future space mission.
- CatchAsteroid_Varna_Bulgaria - en.pps (.pps)
- PRWS_Odysseus_CatchAsteroid_Varna_Bulgaria(4).doc (.doc) (Open)
- CatchAsteroid_Varna_Bulgaria(2).doc (.doc) (Open)
- CatchAsteroid_Varna_Bulgaria(2).pps (.pps)
- PRWS_Odysseus_Catchasteroid_Varna_BG_en.doc (.doc) (Open)

S-a decis ca în acest secol să fie demarată terraformarea planetei Marte. Noi
oferim soluții pentru 3 aspecte ale acestei activități.
Deplasarea de la Terra la Marte durează de la 6 luni la 2 ani, pasagerii aflându-se în imponderabilitate. Acesta le afectează sănătatea. Am imaginat, calculat, construit și experimentat macheta unei stații interplanetare adecvate. Prin
geometrie, rotația în jurul centrului
de masă și amplasarea elementelor masive am obținut o pseudo-accelerație gravitațională de 0,4 g. Spre Marte, stația este simetrică. Pe Terra, revine jumătate din stație. Restul (oameni, materiale,
structuri) rămâne pe Marte pentru activitățile preconizate.
Condițiile de pe Marte sunt improprii vieții. Totuși, există gheață la poli și în cratere. Am
imaginat celule de terraformare care produc elementele necesare vieții: electricitate, apă, oxigen și care pot fi amplasate în sistem robotizat.
Marte nu are atmosferă sau câmp magnetic. Radiația cosmică și vântul solar ajung la suprafața planetei, afectând viața. Solul marțian este bogat în praf magnetic, din care se pot
fabrica robotizat cărămizi .Modelul
nostru din laborator arată că ele constituie un
scut magnetic bun împotriva radiațiilor ionizante.
Considerăm că aceste 3 idei pot fi aprofundate de lumea științifică, constituind un progres în vederea terraformării planetei Marte.
- 1 The start.jpg (.jpg)
- 2 Iman needs.jpg (.jpg)
- 3 Costin says.jpg (.jpg)
- 4 Measuring.jpg (.jpg)
- 5 Cutting.jpg (.jpg)
- 6 Cutting again.jpg (.jpg)
- 7 Fine cut.jpg (.jpg)
- 8 A good step.jpg (.jpg)
- 9 Cooperation.jpg (.jpg)
- 10 Complexity.jpg (.jpg)
- 11 Kaan is working.jpg (.jpg)
- 12 Good ideas hard work.jpg (.jpg)
- 13 One half suspended.jpg (.jpg)
- 14 Painting.jpg (.jpg)
- 15 Verification .jpg (.jpg)
- 16 In position.jpg (.jpg)
- 17 Satisfaction.jpg (.jpg)
- 18 Colleagues in admiration.jpg (.jpg)
- 19 Designed to be admired).jpg (.jpg)
- Heatingwithsolar cells1.jpg (.jpg)
- Heatingwithsolar cells2.jpg (.jpg)
- Electroliza with solar cells 1.jpg (.jpg)
- Electroliza with solar cells 2.jpg (.jpg)
- Magnetic dust 1.jpg (.jpg)
- Magnetic dust fixated.jpg (.jpg)
- Magnetic dust orientated 1.jpg (.jpg)
- Magnetic dust orientated 2.jpg (.jpg)
- Magnetic dust orientated.jpg (.jpg)
- Magnetic dust.jpg (.jpg)
- Magnetic pieces colourated.jpg (.jpg)
- Mars terrain 1.jpg (.jpg)
- Mars terrain 2.jpg (.jpg)
- Mars terrain 3.jpg (.jpg)
- Mars terrain greenhouse effect 1.jpg (.jpg)
- Mars terrain greenhouse effect 2.jpg (.jpg)
- Mars terrain greenhouse effect 3.jpg (.jpg)
- Mars terrain greenhouse effect 4.jpg (.jpg)
- PRWS_Odysseus_ro.doc (.doc) (Open)
- PRWS_Odysseus_ro.pdf (.pdf) (Open)
- Fig 12 Fig13.docx (.docx) (Open)
- Fig 12 Fig13.pdf (.pdf) (Open)
- Fig1 Fig2.docx (.docx) (Open)
- Fig1 Fig2.pdf (.pdf) (Open)
- Fig3 Fig4 Fig5.docx (.docx) (Open)
- Fig3 Fig4 Fig5.pdf (.pdf) (Open)
- Fig6.docx (.docx) (Open)
- Fig6.pdf (.pdf) (Open)
- Fig7 Fig8.docx (.docx) (Open)
- Fig7 Fig8.pdf (.pdf) (Open)
- Fig9 Fig10 Fig11.docx (.docx) (Open)
- Fig9 Fig10 Fig11.pdf (.pdf) (Open)
- Fig14 Fig15.docx (.docx) (Open)
- Fig14 Fig15.pdf (.pdf) (Open)
- Fig16 Fig17.docx (.docx) (Open)
- Fig16 Fig17.pdf (.pdf) (Open)
- Fig18 Fig19.docx (.docx) (Open)
- Fig18 Fig19.pdf (.pdf) (Open)
- Fig20.pdf (.pdf) (Open)
- Fig20.xls (.xls) (Open)
- Fig21.docx (.docx) (Open)
- Fig21.pdf (.pdf) (Open)
- Fig22.docx (.docx) (Open)
- Fig22.pdf (.pdf) (Open)
- Fig23.docx (.docx) (Open)
- Fig23.pdf (.pdf) (Open)
- Odysseus_ro_Trip_to_Mars_final.doc (.doc) (Open)
- Odysseus_ro_Trip_to_Mars_final.pdf (.pdf) (Open)
- Trip to Mars(2).docx (.docx) (Open)
- Trip to Mars(2).pdf (.pdf) (Open)
